Gaussian Half-Wavelength Progressive Decomposition Method for Waveform Processing of Airborne Laser Bathymetry

نویسندگان

  • Kai Guo
  • Wenxue Xu
  • Yanxiong Liu
  • Xiufeng He
  • Ziwen Tian
چکیده

In an airborne laser bathymetry system, the full-waveform echo signal is usually recorded by discrete sampling. The accuracy of signal recognition and the amount of effective information that can be extracted by conventional methods are limited. To improve the validity and reliability of airborne laser bathymetry data and to extract more information to better understand the water reflection characteristics, we select the effective portion of the original waveform for further research, suppress random noise, and decompose the selected portion progressively using the half-wavelength Gaussian function with the time sequence of the received echo signals. After parameter optimization, a reasonable and effective reflection component selection mechanism is established to obtain accurate parameters for the reflected components. The processing strategy proposed in this paper reduces the problems of unreasonable decomposition and the reflected pulse peak-position shift caused by echo waveform superposition and offers good precision for waveform decomposition and peak detection. In another experiment, the regional processing result shows an obvious improvement in the shallow water area, and the bottom point cloud is as accurate as the intelligent waveform digitizer (IWD), a subsystem of airborne laser terrain mapping (ALTM). These findings confirm that the proposed method has high potential for application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote Sensing of Suspended Sediment Concentrations Based on the Waveform Decomposition of Airborne LiDAR Bathymetry

Airborne LiDAR bathymetry (ALB) has been shown to have the ability to retrieve water turbidity using the waveform parameters (i.e., slopes and amplitudes) of volume backscatter returns. However, directly and accurately extracting the parameters of volume backscatter returns from raw green-pulse waveforms in shallow waters is difficult because of the short waveform. This study proposes a new acc...

متن کامل

Performance Assessment of High Resolution Airborne Full Waveform LiDAR for Shallow River Bathymetry

We evaluate the performance of full waveform LiDAR decomposition algorithms with a high-resolution single band airborne LiDAR bathymetry system in shallow rivers. A continuous wavelet transformation (CWT) is proposed and applied in two fluvial environments, and the results are compared to existing echo retrieval methods. LiDAR water depths are also compared to independent field measurements. In...

متن کامل

Effects of intense laser pulse properties on wake field acceleration in magnetized plasma: Half-Sine Shape (HSS) and Gaussian Shape (GS) pulses

In this paper, we have simulated the excitation of wake fields in the interaction of an intensive laser pulses having Half-Sine and Gaussian time envelopes with a fully ionized cold plasma using particle in cell (PIC) method. We investigated the dependency of wake filed amplitude to different laser and plasma parameters such as laser wavelength, pulse duration and electron number density. In ad...

متن کامل

Icesat Full Waveform Altimetry Compared to Airborne Laser Altimetry over the Netherlands

Since 2003 the spaceborne laser altimetry system on board of NASA’s Ice, Cloud and land Elevation Satellite (ICESat) has acquired a large world-wide database of full waveform data organized in 15 products. In this research three products are evaluated over The Netherlands. For this purpose the raw full waveform product, the derived Gaussian decomposition product and the global land evaluation p...

متن کامل

An Improved Quadrilateral Fitting Algorithm for the Water Column Contribution in Airborne Bathymetric Lidar Waveforms

In this paper, an improved method based on a mixture of Gaussian and quadrilateral functions is presented to process airborne bathymetric LiDAR waveforms. In the presented method, the LiDAR waveform is fitted to a combination of three functions: one Gaussian function for the water surface contribution, another Gaussian function for the water bottom contribution, and a new quadrilateral function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018